1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//! # [Day 24: Electromagnetic Moat](http://adventofcode.com/2017/day/24) //! //! The CPU itself is a large, black building surrounded by a bottomless //! pit. Enormous metal tubes extend outward from the side of the building //! at regular intervals and descend down into the void. There's no way to //! cross, but you need to get inside. //! //! No way, of course, other than building a *bridge* out of the magnetic //! components strewn about nearby. use itertools::Itertools; use ::parse::unsigned_number; /// Each component has two *ports*, one on each end. The ports come in all /// different types, and only matching types can be connected. You take an /// inventory of the components by their port types (your puzzle input). /// Each port is identified by the number of *pins* it uses; more pins mean /// a stronger connection for your bridge. A `3/7` component, for example, /// has a type-`3` port on one side, and a type-`7` port on the other. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub struct Component(usize, usize); impl Component { named!{ from_bytes (&[u8]) -> Component, do_parse!( a: unsigned_number >> char!('/') >> b: unsigned_number >> (Component(a, b)) ) } named!{ list_from_bytes (&[u8]) -> Vec<Component>, lines!(Component::from_bytes) } fn strength(self) -> usize { self.0 + self.1 } } fn dfs_step( path: &mut Vec<usize>, last_index: usize, graph: &Vec<Component>, cmp_f: &Fn((usize, usize), (usize, usize)) -> bool, ) -> (usize, usize) { let edges = graph.iter() .positions(|&Component(a, b)| last_index == a || last_index == b) .filter(|e| !path.contains(e)) .collect::<Vec<_>>(); if edges.len() == 0 { let strength = path.iter() .map(|&ei| graph[ei].strength()) .sum::<usize>(); return (path.len(), strength); } let mut max_len = 0; let mut max_strength = 0; for edge in edges { path.push(edge); let new_index = if graph[edge].0 == last_index { graph[edge].1 } else { graph[edge].0 }; let (new_len, new_strength) = dfs_step(path, new_index, graph, cmp_f); if cmp_f((max_len, max_strength), (new_len, new_strength)) { max_len = new_len; max_strength = new_strength; } path.pop(); } (max_len, max_strength) } /// Your side of the pit is metallic; a perfect surface to connect a /// magnetic, *zero-pin port*. Because of this, the first port you use must /// be of type `0`. It doesn't matter what type of port you end with; your /// goal is just to make the bridge as strong as possible. fn dfs( graph: &Vec<Component>, cmp_f: &Fn((usize, usize), (usize, usize)) -> bool, ) -> usize { dfs_step(&mut vec![], 0, graph, cmp_f).1 } /// The *strength* of a bridge is the sum of the port types in each /// component. For example, if your bridge is made of components `0/3`, /// `3/7`, and `7/4`, your bridge has a strength of `0+3 + 3+7 + 7+4 = 24`. /// /// For example, suppose you had the following components: /// /// 0/2 /// 2/2 /// 2/3 /// 3/4 /// 3/5 /// 0/1 /// 10/1 /// 9/10 /// /// With them, you could make the following valid bridges: /// /// - `0/1` /// - `0/1`--`10/1` /// - `0/1`--`10/1`--`9/10` /// - `0/2` /// - `0/2`--`2/3` /// - `0/2`--`2/3`--`3/4` /// - `0/2`--`2/3`--`3/5` /// - `0/2`--`2/2` /// - `0/2`--`2/2`--`2/3` /// - `0/2`--`2/2`--`2/3`--`3/4` /// - `0/2`--`2/2`--`2/3`--`3/5` /// /// (Note how, as shown by `10/1`, order of ports within a component doesn't /// matter. However, you may only use each port on a component once.) /// /// Of these bridges, the *strongest* one is `0/1`--`10/1`--`9/10`; it has a /// strength of `0+1 + 1+10 + 10+9 = 31`. /// /// ``` /// # use advent_solutions::advent2017::day24::{ parse_input, part1 }; /// let input = parse_input("\ /// 0/2 /// 2/2 /// 2/3 /// 3/4 /// 3/5 /// 0/1 /// 10/1 /// 9/10 /// "); /// /// assert_eq!(part1(&input), 31); /// ``` /// /// *What is the strength of the strongest bridge you can make* with the /// components you have available? pub fn part1(graph: &Vec<Component>) -> usize { dfs( graph, &|(_, max_strength), (_, new_strength)| new_strength > max_strength ) } /// The bridge you've built isn't long enough; you can't <span /// title="Who do you think you are, Mario?">jump the rest of the way</span>. /// /// In the example above, there are two longest bridges: /// /// - `0/2`--`2/2`--`2/3`--`3/4` /// - `0/2`--`2/2`--`2/3`--`3/5` /// /// Of them, the one which uses the `3/5` component is stronger; its /// strength is `0+2 + 2+2 + 2+3 + 3+5 = 19`. /// /// ``` /// # use advent_solutions::advent2017::day24::{ parse_input, part2 }; /// let input = parse_input("\ /// 0/2 /// 2/2 /// 2/3 /// 3/4 /// 3/5 /// 0/1 /// 10/1 /// 9/10 /// "); /// /// assert_eq!(part2(&input), 19); /// ``` /// /// *What is the strength of the longest bridge you can make?* If you can /// make multiple bridges of the longest length, pick the *strongest* one. pub fn part2(graph: &Vec<Component>) -> usize { dfs( graph, &|(max_len, max_strength), (new_len, new_strength)| new_len > max_len || (new_len == max_len && new_strength > max_strength) ) } pub fn parse_input(input: &str) -> Vec<Component> { Component::list_from_bytes(input.as_bytes()) .to_full_result() .expect("Error parsing components") } test_day!("24", 1868, 1841);