1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
//! # [Day 16: Permutation Promenade](http://adventofcode.com/2017/day/16) //! //! You come upon a very unusual sight; a group of programs here appear to //! be [dancing](https://www.youtube.com/watch?v=lyZQPjUT5B4&t=53). use nom::anychar; use ::parse::unsigned_number; /// There are sixteen programs in total, named `a` through `p`. They start /// by standing in a <span title="This is called a 'newline'.">line</span>: /// `a` stands in position `0`, `b` stands in position `1`, and so on until /// `p`, which stands in position `15`. fn initial_programs() -> Vec<char> { vec![ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', ] } /// The programs' *dance* consists of a sequence of *dance moves*: /// /// - *Spin*, written `sX`, makes `X` programs move from the end to the /// front, but maintain their order otherwise. (For example, `s3` on /// `abcde` produces `cdeab`). /// /// ``` /// # use advent_solutions::advent2017::day16::Move; /// assert_eq!( /// Move::Spin(3).apply(vec!['a', 'b', 'c', 'd', 'e']), /// ['c', 'd', 'e', 'a', 'b'] /// ) /// ``` /// /// - *Exchange*, written `xA/B`, makes the programs at positions `A` and /// `B` swap places. /// - *Partner*, written `pA/B`, makes the programs named `A` and `B` swap /// places. /// /// For example, with only five programs standing in a line (`abcde`), they /// could do the following dance: /// /// ``` /// let starting_programs = vec!['a', 'b', 'c', 'd', 'e']; /// ``` /// /// - `s1`, a spin of size `1`: `eabcd`. /// /// ``` /// # use advent_solutions::advent2017::day16::Move; /// # let starting_programs = vec!['a', 'b', 'c', 'd', 'e']; /// assert_eq!( /// Move::Spin(1).apply(starting_programs), /// ['e', 'a', 'b', 'c', 'd'] /// ) /// ``` /// /// - `x3/4`, swapping the last two programs: `eabdc`. /// /// ``` /// # use advent_solutions::advent2017::day16::Move; /// # let after_s1 = vec!['e', 'a', 'b', 'c', 'd']; /// assert_eq!( /// Move::Exchange(3, 4).apply(after_s1), /// ['e', 'a', 'b', 'd', 'c'] /// ) /// ``` /// /// - `pe/b`, swapping programs `e` and `b`: `baedc`. /// /// ``` /// # use advent_solutions::advent2017::day16::Move; /// # let after_x34 = vec!['e', 'a', 'b', 'd', 'c']; /// assert_eq!( /// Move::Partner('e', 'b').apply(after_x34), /// ['b', 'a', 'e', 'd', 'c'] /// ) /// ``` /// /// After finishing their dance, the programs end up in order `baedc`. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub enum Move { Spin(usize), Exchange(usize, usize), Partner(char, char), } use self::Move::*; impl Move { pub fn apply(&self, mut programs: Vec<char>) -> Vec<char> { match *self { Spin(length) => { let total = programs.len(); let mut end = programs.split_off(total - length); end.extend(programs); end }, Exchange(a, b) => { programs.swap(a, b); programs }, Partner(a, b) => { let a_i = programs.iter().position(|&x| x == a).unwrap(); let b_i = programs.iter().position(|&x| x == b).unwrap(); programs.swap(a_i, b_i); programs }, } } named!{ parse_spin (&[u8]) -> Move, do_parse!( char!('s') >> x: unsigned_number >> (Spin(x)) ) } named!{ parse_exchange (&[u8]) -> Move, do_parse!( char!('x') >> a: unsigned_number >> char!('/') >> b: unsigned_number >> (Exchange(a, b)) ) } named!{ parse_partner (&[u8]) -> Move, do_parse!( char!('p') >> a: anychar >> char!('/') >> b: anychar >> (Partner(a, b)) ) } named!{ pub list_from_bytes (&[u8]) -> Vec<Move>, separated_list!( char!(','), alt!( call!(Move::parse_spin) | call!(Move::parse_exchange) | call!(Move::parse_partner) ) ) } } fn dance(mut programs: Vec<char>, moves: &[Move]) -> Vec<char> { for m in moves { programs = m.apply(programs); } programs } /// You watch the dance for a while and record their dance moves (your /// puzzle input). *In what order are the programs standing* after their /// dance? pub fn part1(moves: &[Move]) -> String { dance(initial_programs(), moves) .into_iter().collect() } fn find_cycle(moves: &[Move]) -> usize { let programs = initial_programs(); let mut p = initial_programs(); for i in 1.. { p = dance(p, moves); if programs == p { return i; } } unreachable!(); } /// Now that you're starting to get a feel for the dance moves, you turn /// your attention to *the dance as a whole*. /// /// Keeping the positions they ended up in from their previous dance, the /// programs perform it again and again: including the first dance, a total /// of *one billion* (`1000000000`) times. /// /// In the example above, their second dance would *begin* with the order /// `baedc`, and use the same dance moves: /// /// - `s1`, a spin of size `1`: `cbaed`. /// - `x3/4`, swapping the last two programs: `cbade`. /// - `pe/b`, swapping programs `e` and `b`: `ceadb`. /// /// *In what order are the programs standing* after their billion dances? pub fn part2(moves: &[Move]) -> String { let dance_times = 1_000_000_000 % find_cycle(moves); let mut programs = initial_programs(); for _ in 0..dance_times { programs = dance(programs, moves); } programs.into_iter().collect() } pub fn parse_input(input: &str) -> Vec<Move> { Move::list_from_bytes(input.as_bytes()) .to_full_result() .expect("Error parsing moves") } test_day!("16", "nlciboghjmfdapek", "nlciboghmkedpfja");