1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
//! # [Day 14: Disk Defragmentation](http://adventofcode.com/2017/day/14) //! //! Suddenly, a scheduled job activates the system's [disk defragmenter]. //! Were the situation different, you might [sit and watch it for a while], //! but today, you just don't have that kind of time. It's soaking up //! valuable system resources that are needed elsewhere, and so the only //! option is to help it finish its task as soon as possible. //! //! [disk defragmenter]: https://en.wikipedia.org/wiki/Defragmentation //! [sit and watch it for a while]: https://www.youtube.com/watch?v=kPv1gQ5Rs8A&t=37 use std::fmt; use super::knot_hash; /// The disk in question consists of a 128x128 grid; each square of the grid /// is either *free* or *used*. On this disk, the state of the grid is /// tracked by the bits in a sequence of [knot hashes]. /// /// [knot hashes]: ../day10/index.html pub struct Grid(Vec<Vec<bool>>); impl fmt::Display for Grid { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.iter() .map(|line| { line.iter().map(|&x| write!(f, "{}", if x { '#' } else { '.' })) .skip_while(|x| x.is_ok()) .next() .unwrap_or(Ok(())) .and_then(|_| write!(f, "\n")) }) .skip_while(|x| x.is_ok()) .next() .unwrap_or(Ok(())) .and_then(|_| write!(f, "\n")) } } /// A total of 128 knot hashes are calculated, each corresponding to a /// single row in the grid; each hash contains 128 bits which correspond to /// individual grid squares. Each bit of a hash indicates whether that /// square is *free* (`0`) or *used* (`1`). /// /// The hash inputs are a key string (your puzzle input), a dash, and a /// number from `0` to `127` corresponding to the row. For example, if your /// key string were `flqrgnkx`, then the first row would be given by the /// bits of the knot hash of `flqrgnkx-0`, the second row from the bits of /// the knot hash of `flqrgnkx-1`, and so on until the last row, /// `flqrgnkx-127`. pub fn make_hashes(input: &str) -> Vec<Vec<u8>> { (0..128) .map(|i| { let i_str = format!("{}-{}", input, i); knot_hash::hash_str(&i_str, 64) }) .collect::<Vec<_>>() } /// The output of a knot hash is traditionally represented by 32 hexadecimal /// digits; each of these digits correspond to 4 bits, for a total of /// `4 * 32 = 128` bits. To convert to bits, turn each hexadecimal digit to /// its equivalent binary value, high-bit first: `0` becomes `0000`, `1` /// becomes `0001`, `e` becomes `1110`, `f` becomes `1111`, and so on; a /// hash that begins with `a0c2017...` in hexadecimal would begin with /// `10100000110000100000000101110000...` in binary. /// /// Continuing this process, the *first 8 rows and columns* for key /// `flqrgnkx` appear as follows, using `#` to denote used squares, and `.` /// to denote free ones: /// /// ```text /// ##.#.#..--> /// .#.#.#.# /// ....#.#. /// #.#.##.# /// .##.#... /// ##..#..# /// .#...#.. /// ##.#.##.--> /// | | /// V V /// ``` /// /// In this example, `8108` squares are used across the entire 128x128 grid. /// /// ``` /// # use advent_solutions::advent2017::day14::{ make_hashes, part1 }; /// let hashes = make_hashes("flqrgnkx"); /// assert_eq!(part1(&hashes), 8108); /// ``` /// /// Given your actual key string, *how many squares are used*? pub fn part1<'a, I, J>(hashes: I) -> u32 where I: IntoIterator<Item=J>, J: IntoIterator<Item=&'a u8>, { hashes.into_iter() .map(|row| row.into_iter() .map(|x| x.count_ones()) .sum::<u32>() ) .sum::<u32>() } /// Now, <span title="This is exactly how it works in real life.">all the /// defragmenter needs to know</span> is the number of *regions*. A region /// is a group of *used* squares that are all *adjacent*, not including /// diagonals. Every used square is in exactly one region: lone used squares /// form their own isolated regions, while several adjacent squares all /// count as a single region. /// /// In the example above, the following nine regions are visible, each /// marked with a distinct digit: /// /// ```text /// 11.2.3..--> /// .1.2.3.4 /// ....5.6. /// 7.8.55.9 /// .88.5... /// 88..5..8 /// .8...8.. /// 88.8.88.--> /// | | /// V V /// ``` /// /// Of particular interest is the region marked `8`; while it does not /// appear contiguous in this small view, all of the squares marked `8` are /// connected when considering the whole 128x128 grid. In total, in this /// example, `1242` regions are present. /// /// ``` /// # use advent_solutions::advent2017::day14::{ make_hashes, part2 }; /// let hashes = make_hashes("flqrgnkx"); /// assert_eq!(part2(&hashes), 1242); /// ``` /// /// *How many regions* are present given your key string? pub fn part2<'a, I, J>(hashes: I) -> usize where I: IntoIterator<Item=J>, J: IntoIterator<Item=&'a u8>, { let grid = Grid( hashes.into_iter() .map(|row| row.into_iter() .flat_map(|x| ::iter::Bits::new(*x as usize, 8)) .collect() ) .collect() ); use std::collections::HashSet; let mut ungrouped = grid.0.iter() .enumerate() .flat_map(|(y, row)| ::std::iter::repeat(y) .zip(0..row.len()) ) .filter(|&(y, x)| grid.0[y][x]) .collect::<HashSet<(usize, usize)>>(); let mut groups = Vec::new(); while let Some(&(y, x)) = ungrouped.iter().next() { let mut group = Vec::new(); let mut candidates = vec![(y, x)]; while let Some((y, x)) = candidates.pop() { if ungrouped.contains(&(y, x)) { group.push((y, x)); if y < 127 { candidates.push((y + 1, x)); } if y > 0 { candidates.push((y - 1, x)); } if x < 127 { candidates.push((y, x + 1)); } if x > 0 { candidates.push((y, x - 1)); } ungrouped.remove(&(y, x)); } } groups.push(group); } groups.len() } pub fn parse_input(input: &str) -> Vec<Vec<u8>> { make_hashes(&input[..input.len() - 1]) } test_day!("14", 8222, 1086);