Function advent_solutions::advent2017::knot_hash::hash_str [] [src]

pub fn hash_str(input: &str, rounds: usize) -> Vec<u8>

The logic you've constructed forms a single round of the Knot Hash algorithm; running the full thing requires many of these rounds. Some input and output processing is also required.

First, from now on, your input should be taken not as a list of numbers, but as a string of bytes instead. Unless otherwise specified, convert characters to bytes using their ASCII codes. This will allow you to handle arbitrary ASCII strings, and it also ensures that your input lengths are never larger than 255. For example, if you are given 1,2,3, you should convert it to the ASCII codes for each character: 49,44,50,44,51.

Once you have determined the sequence of lengths to use, add the following lengths to the end of the sequence: 17, 31, 73, 47, 23. For example, if you are given 1,2,3, your final sequence of lengths should be 49,44,50,44,51,17,31,73,47,23 (the ASCII codes from the input string combined with the standard length suffix values).

Second, instead of merely running one round like you did above, run a total of 64 rounds, using the same length sequence in each round. The current position and skip size should be preserved between rounds. For example, if the previous example was your first round, you would start your second round with the same length sequence (3, 4, 1, 5, 17, 31, 73, 47, 23, now assuming they came from ASCII codes and include the suffix), but start with the previous round's current position (4) and skip size (4).

Once the rounds are complete, you will be left with the numbers from 0 to 255 in some order, called the sparse hash. Your next task is to reduce these to a list of only 16 numbers called the dense hash. To do this, use numeric bitwise XOR to combine each consecutive block of 16 numbers in the sparse hash (there are 16 such blocks in a list of 256 numbers). So, the first element in the dense hash is the first sixteen elements of the sparse hash XOR'd together, the second element in the dense hash is the second sixteen elements of the sparse hash XOR'd together, etc.

For example, if the first sixteen elements of your sparse hash are as shown below, and the XOR operator is ^, you would calculate the first output number like this:

65 ^ 27 ^ 9 ^ 1 ^ 4 ^ 3 ^ 40 ^ 50 ^ 91 ^ 7 ^ 6 ^ 0 ^ 2 ^ 5 ^ 68 ^ 22 = 64

Perform this operation on each of the sixteen blocks of sixteen numbers in your sparse hash to determine the sixteen numbers in your dense hash.